PHYSICAL REVIEW E VOLUME 55, NUMBER 3 MARCH 1997

Diffusion-controlled growth of a solid cylinder into its undercoded melt:
Instabilities and pattern formation studied with the phase-field model
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Instabilities in the solidification of a cylinder in its undercooled melt are numerically studied within the
phase-field model. This growth becomes morphologically unstable when its radius exceeds a critidaf yalue
that is a decreasing function of the thermodynamic driving force: the circular growth regime should be hardly
observable, in practice, except possibly at extremely low values of the dimensionless underaodliog-
ever, the equation for the amplitude of the perturbing modes shows that the response of the growing front to a
finite noise is drastically reduced whénis increased, so that a more stable growth should be associated to
larger undercoolings. This suggestion is confirmed by the numerical simulations, which allow us to fix the
onset and the extent of the perturbations. To summarize the results, an effective critical radius is represented as
a function ofA. [S1063-651X97)13902-3

PACS numbg(s): 05.70.Fh, 68.76:-w, 61.50.Ks

[. INTRODUCTION on the growing front in response to a finite noise has not yet
been investigated. In the present study this point will be ad-
Pattern formation during nonequilibrium growth has beendressed both analytically, within the free-boundary picture,
addressed in several studies; extensive reviews are given and numerically, simulating the growth process with the
[1-3]. Particular attention has been focused on first-ordephase-field mode[7,8]. To render tractable the numerical
phase-transition processes, in which at least one conservegbproach, the analysis will be limited to the two dimensional
quantity (heat of solidification or solute materjahas to be (2D) case (cylindrical or circular growth, still retaining
rejected away from the advancing front. Starting from thesome of the most interesting features of the full three dimen-
seminal papers of Mullins and Sekerllg5], the central role  sional (3D) problem.
in the selection of growth patterns has been recognized in the The analysis of the governing equation will show that the
interplay between the macroscopic thermodynamic drivingamplitude of the perturbing modes, in the early stage of the
force (undercooling or supersaturatioand the microscopic process, is drastically reduced whéans increased, so that a
interfacial dynamics, that sets the proper length scale, i.emore stable growth should be associated to larger undercool-
the capillary lengthd,, necessary for the pattern description. ings.
While a linear analysis allows us to identify the spectrum of We consider a pure substance, so that the diffusion
the unstable moddgat least under some simplifying assump- field is given by the dimensionless temperaturéx,t)
tions), little attention has been paid to the detailed descrip=c[T(x,t)—T,]/L, while the driving force is the under-
tion of the growth process at the early stage, when the freeoolingA=c(T,,—Tg)/L, whereT, andT, represent the the
guency spectrum of the fluctuations enters the instability)coexistence temperature of the two phases and the initial

band and the unperturbed front is rapidly destroyed. temperature of the melt, respectivetyandL are the specific
For the steady growth of a needle crystal, this subject haand latent heat per unit volume.
been recently addressed by Brem¢ral. [6] within a free- The phase-field approach removes the necessity of track-

boundary numerical approach. They show that the dendriteng the front position, that is found as a part of the numerical
tip starts to deform when the amplitude of the perturbationsolution, and incorporates in a natural fashion both surface
exceeds a threshold value that is dependent on the anisotropgnsion and surface kinetics effects. On the other hand, the
of the surface tension; small amplitude fluctuations are conelassical free-boundary formulation of the problem is recov-
vected away and disappear from the tip region. ered asymptotically when the solid-liquid interface is suffi-
Another situation of interest is that of a solid particle ciently sharp9].
nucleated in its undercooled melt. As the action of the sur- The model gives a diffuse interface picture of the solidi-
face tension is directed to minimize the surface to volumdication process, and besides the capillary length introduces a
ratio, at first the shape selected is circu(ar two dimen- new length scale, that is the interface thicknés&ealistic
siong or sphericalin three dimensionsNo steady solutions values of this parameter fall in the range of several atomic
can be found in these geometries, because the rate of growttimensiong10]. In 2D numerical simulations, the grid spac-
of the particle depends upon its radius, which is increasingng must be selected in the order &fvhile, to prevent finite
with time. In both cases a linear stability analysis performedsize effects, the dimensions of the computational domain
within the quasistationary approximation shows that themust be much larger than the thermal diffusion length. As a
germ becomes morphologically unstable when its radius exresult, the cost of the solution increases &4, and even
ceeds a critical valuR*, that is a decreasing function of the simple problems would result beyond the possibilities of the
undercoolingA: only at very low values ofA should the present day computing resources. In this study, following a
symmetrical growth be practically observable. suggestion of Wheeler, Boettinger, and McFadd#&h], a
However, the onset and the development of perturbationgalue is selected for the interface thickness that is small com-
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pared to the lowest geometric scale that characterizes thEhe stability of the circular solution can be tested assuming a
process, namely, the local radius of curvature of the persmall perturbation on the interface, of the form
turbed front, and, nevertheless, more than ten times greater _
than realistic values. SR=eneMeT ! )

The paper is organized as follows: in Sec. Il a linear sta-, . - :
bility analysis of the free boundary equations will be con-that involves variations of the temperature field
ducted, to find the dependence of the critical radRfson
the undercooling\; then the solution of the amplitude equa-
tion for the perturbing modes will show that lower perturba-\yhere the subscripts! &) refer to the liquid and solid
tions correspond to larger values &f In Sec. Il the phase- phases, respectivelyp is the angular coordinate, that ac-
field model will be introduced, along with the method counts for the loss of circular symmetry of the interface.

utilized to 0bta|n the num?rical solution. In Sec. IV the re.' So|ving the Lap'ace equation for the perturbation givesy to
sults of the simulations will be presented, and Sec. V willfyrst order,

give some conclusions.

8U(1 5= Om1.5€™? ", (8)

Om(sy= — do(M?— 1) e,R™(M* 2™, 9)
Il. STABILITY OF THE CIRCULAR GROWTH: q ) )
AMPLITUDE OF THE PERTURBING MODES o(m -1 _

Hm(|)= Upn— T GmRmr m (10)

The onset of instabilities in the growth of a solid cylinder
into its undercooled melt is easily shown through a lineargng the exponential growth rate is found as
analysis of the free-boundary equations. For this purpose, the
system considered is a solid cylinder with radiBssur- v 2)\§m(m+ 1)
rounded by undercooled liquid in a cylindrical container with OmT R (m— 1){1— R
fixed temperaturei=—A at the wall. The radius of the con-
tainer isR; . The rate of growth is limited by the diffusion of ity No= ol here l,, is the thermal diffusion length,
latent heat away from the interface; the dynamical field isgiven by l,= 1k, . Equation(11) states thaw,, is an in-
then the local temperature, that obeys the diffusion equatioereasing function of the front velocity, , and becomes posi-

U.=V2u (1) tive asR increases beyon&* =\qyy2m(m+1); for m=2
t ' (the most unstable mod&* =2v3\,. It is worth noting that
since\, decreases with an increasing front veloditg., the
undercoolingd), the unperturbed circular front could survive
after the early stage of the growth only at very low values of

: (11)

Here, and in the following, the problem is treated in dimen-
sionless form, using some reference lengtland with time
scaled to&?/D. Neglecting the departure from thermody-
namical equilibrium, the diffusion fields must fulfill the

interface condition However, a different perspective is offered when the ef-

fect of finite noise on the front stability is investigated. Let
U= — do/C. (2 us assume that on the interface is a continuously acting noise
of the form
The capillary lengthd, is defined asdy=(cT,/L)(a/L), _ imd
whereo is the surface tension, arid is the local curvature 7m(t) =Q(1) yme'™?, (12)
of the interface. The energy conservation at the 'merfacﬂhere(Q(t)Q(t’)>=5(t—t’), and (Q(1))=0; y,, is the

relates the temperature gradients on the liquid and solid Sider?oise amplitude. The interface evolution of themode is
of the front to its normal velocity described by '

vn=—[VUu—Vug]ip-n, € ém:wmem+ 7m(t). (13

wheren is the normal versor to the interface. The problemniegrating Eq(13) gives, for the mode amplitude,
gives a simple solution in the quasistationary approximation,

(instantaneous response of the thermal field to the actual _ yé _
front configuratiof. In this limit, valid for small undercool- (lem(D)?))=(|em(0)? )&+ Z—w_(ez‘”t—l), (14)
ings, Eq.(1) reduces to the Laplace equation. Its circular
symmetric solution is wherew is the time average ab,,,.
q The two terms on the right-hand side of Efj4) describe
__ o two different processes: the evolution of an initially imposed
ur) =~ dokt In(R:/R) In(r/R), >R @ perturbation, and the noise induced perturbation«Ais of
the order ofv ,/R, it follows thatwt is of order one; then Eq.
u(r)=—dok, r=<R (5) (14) suggests that the noise effect would decrease with in-
creasingw, i.e., the front velocity; ultimately increasing the
and the interface velocity is supercoolingd would result in a damping effect on the front
instabilities. In the following sections this suggestion will be
= doC—A ©6) confirmed by simulating numerically the growth process

B IN(R./R)R" with the phase-field model.
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FIG. 1. (a) The solid seed at=0.06.A=0.6. (b) The solid seed FIG. 2. (a) The solid seed at=0.03.A=0.9. (b) The solid seed
att=0.2.A=0.6. att=0.09.A=0.9.

lll. THE PHASE-FIELD MODEL: GOVERNING The function p(¢)=$%(10—15¢+6¢% enforces the condi-

EQUATIONS AND NUMERICAL TECHNIQUES tion that the kinetic equations have two fixed pointspat0

The model describes the solidification of a pure substancand ¢=1 for every value ofu. I'(t) represents the noise
in terms of two fields: the scalar phase fiehx,t) coupled acting on the interface. The three dimensionless constants
to the dimensionless temperature fielgk,t), The field¢ is ~ appearing in Eqs(15) and (16) were related by Wheeler,
an order parameter and represents a solid#fiet0 and a  Murray, zzmd Schaefgd 4] to the material properties, namely,
liquid for ¢=1. Intermediate values correspond to the inter-a=v2£L°/(12coTy), m=puoT/(DL) ande=dé whereu
face between these two phases. The dynamical equatiorigpresents the kinetic undercooling coefficient. In the follow-
derived along the lines suggested by Penrose and[E#g  ing numerical simulations we pu&=200, m=0.05, and

and then followed by Wangt al. [13], are the following: €=0.01; fixing the length scale a@=1.05<10"* c¢m, these
values mimic, as close as possible, the thermophysical prop-
= —v2u-p'(¢) 9 (15) erties of nickel near its melting temperatifb).
ot at’ Equations(15) and (16) have been solved on a two di-

2 94 mensional square domains<\, 0<y=\; fixing A=7.65
€ J was sufficient to prevent finite size effects. Adiabatic condi-
_ T 2yg2 _ 1 ’
mat © Vit (1= h)(d=2) T eap’($)u+T(L). tions were imposed on the domain’s boundaries. Initially, in
(16) the undercooled melfu=—A, ¢=1) a solid seed(u=0,
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FIG. 3. Distortion index of the circular front vs the average  FIG. 5. Distortion index of the circular front vs the average
radius of the seedA=0.6. radius of the seed\=0.9.

¢=0) is prepared at the center of the square. The size of ththe perturbations start to grow. A typical example of such
seed(3x3 grid points is the minimum required to avoid pehavior is given in Figs. (& and Xb), where the growing
remelting and to ensure the successive growth. To discretizgy|id is shown at two different times. Here the undercooling
the equations, a uniform spatial grid is utilized, wkk=Ay  js A=0.6. Changing the undercooling has a strong effect on
=0.01; the Laplace operator is approximated through a fivghe deformation of the interface. Figure@Rand Zb) show
point formula and an explicit Euler integration scheme isthe solid seed at two different times, with=0.9: it can be
employed to advance forward in time. A time stepgpserved that here the extent of the deformations is consid-
At=0.2x10"* was required to ensure the stability of the erably lower.

numerical scheme. The resolution of the grid was chosen Tg describe the extent of the deformation a distortion in-
following the suggestion of Wheeler, Murray, and Schaefeldex is defined as

[14], to limit the truncation errors of the Laplace operator;
the residual contribution of the numerical noise results in a
superposition of circular modes acting on the interface, and
has been utilized as the noise soulie).

VR%(¢)—R($)2. (17)

lg

“R(¢)

IV. NUMERICAL RESULTS The functionR(¢) is evaluated dividing the computational
domain into 64 circular sectors of equal widp=27/64,

The initially square solid seed grows into the melt; the ;onereq at the initial position of the seed. In each sector the
action of the surface tension is directed as to minimize thg,gn+ position is fixed through the relation

surface to volume ratio, and very soon the interface becomes
almost circular. Then, as the radius of the seed excB&ds

R¥(P)Ap=S(9), (18

4.00

whereS(¢) is the solid area in the sector considered.
. 8=06 The distortionl 4 is evaluated, during the evolution of the
process, at regular intervals of time; moreover, a Fourier
analysis is performed with the same periodicity on the func-
tion R(¢), in order to identify the presence and the growth of
the perturbing modes. _

Figure 3 shows the distortioly versusR for A=0.6. It
can be observed thay is high at the beginning of the pro-
cess, due to the square shape of the initial nucleus. Then the
initial distortion is rapidly reabsorbed, ahglreaches a mini-
mum atR=0.18, where the distortion is less than 0.01; be-
yond this value the onset of the perturbations is clearly rec-
ognizable. These results are complemented by Fig. 4, where
the spectral intensities of the two circular harmonics-4
B andm=8 are represented versks At first, asw, becomes
R positive, the moden=4 greatly increases; successively the
modem=8 enters the instability band and starts to grow. The
crossover of the two curves &=0.65 indicates that at a
later stage of the growth the propagation of the moge8 is

g =
=3 =y
S S
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FIG. 4. Spectral intensities of the modes=4 (solid line) and
m=8 (dotted ling, vs the average radius of the sead=0.6.
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FIG. 6. Spectral intensities of the modes=4 (solid line) and FIG. 7. The effective critical radius of the circular front vs the
m=8 (dotted ling, vs the average radius of the sedd=0.9. supercoolingA.

favored; however, this behavior cannot be amended 10 g, o5 ynstable beyond a critical size and is rapidly de-

straightforward analysis of Eq14). troyed. According to the stability analysis of the free-

Figure 5 gives the same informations than Fig. 3, but nov@ q " th t of th turbati )
A=0.9. In this case too the initial distortion is substantially oundary equations, the onset of the perturbations 1S ex-

reabsorbed wheR<0.1, but here the onset of the perturba- pected to occur at lower values of the cylinder radius as the
tions is retarded, andly reaches its minimum aR=0.35 undercoolingA increases; on the other side the amplitude
where the distortion is less than 0.005;R#0.5 1 is still ~ €quation for the perturbing modes shows that the extent of
below 0.01. Figure 6 shows that now the intensity of theth® deformations in response to a finite noise should be re-
modem=4 at the early stage is strongly damped, due to thgluced with increasing. This suggestion is confirmed by a
low prefactor 1% in Eq. (14); beyondR=0.3 the moden=g  Simulation of the process, conducted using the phase-field
is prevailing. __ model. The numerical results show that at large values of
The value ofR where the minimum of 4 occurs, can be the onset of the perturbations is retarded and the circular
regarded as an effective critical radiR$’ for the stability of ~ Symmetry of the growing front is effectively preserved at
the circular growth; Fig. 7 shows th&®*' increases with larger values of the cylinder radius. .
increasing the supercooling, indicating that the symmetry ~ Due to the limitation of computing resources it is not

of the circular front is more easily preserved at large value®0Ssible, at present, to conduct the numerical simulation in
of A. three dimensions, to describe the onset and the development

of perturbations in the growth of a spherical germ. Neverthe-
less, the 2D problem still retains some of the most interesting
V. CONCLUSIONS ' . -
features that characterize the spherical growth, and the re-
The growth of a cylinder of solid into the undercooled sults we presented should provide a satisfactory insight even
melt has been analyzed in two dimensions. The circular fronof the three dimensional case.
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