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Diffusion-controlled growth of a solid cylinder into its undercoded melt:
Instabilities and pattern formation studied with the phase-field model

M. Conti, F. Marinozzi, and U. Marini Bettolo Marconi
Dipartimento di Matematica e Fisica, Universita’ di Camerino, 62032 Camerino, Italy

~Received 24 May 1996!

Instabilities in the solidification of a cylinder in its undercooled melt are numerically studied within the
phase-field model. This growth becomes morphologically unstable when its radius exceeds a critical valueR* ,
that is a decreasing function of the thermodynamic driving force: the circular growth regime should be hardly
observable, in practice, except possibly at extremely low values of the dimensionless undercoolingD. How-
ever, the equation for the amplitude of the perturbing modes shows that the response of the growing front to a
finite noise is drastically reduced whenD is increased, so that a more stable growth should be associated to
larger undercoolings. This suggestion is confirmed by the numerical simulations, which allow us to fix the
onset and the extent of the perturbations. To summarize the results, an effective critical radius is represented as
a function ofD. @S1063-651X~97!13902-2#

PACS number~s!: 05.70.Fh, 68.70.1w, 61.50.Ks
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I. INTRODUCTION

Pattern formation during nonequilibrium growth has be
addressed in several studies; extensive reviews are give
@1–3#. Particular attention has been focused on first-or
phase-transition processes, in which at least one conse
quantity ~heat of solidification or solute material! has to be
rejected away from the advancing front. Starting from t
seminal papers of Mullins and Sekerka@4,5#, the central role
in the selection of growth patterns has been recognized in
interplay between the macroscopic thermodynamic driv
force ~undercooling or supersaturation! and the microscopic
interfacial dynamics, that sets the proper length scale,
the capillary lengthd0, necessary for the pattern descriptio
While a linear analysis allows us to identify the spectrum
the unstable modes~at least under some simplifying assum
tions!, little attention has been paid to the detailed desc
tion of the growth process at the early stage, when the
quency spectrum of the fluctuations enters the instab
band and the unperturbed front is rapidly destroyed.

For the steady growth of a needle crystal, this subject
been recently addressed by Breneret al. @6# within a free-
boundary numerical approach. They show that the dend
tip starts to deform when the amplitude of the perturbatio
exceeds a threshold value that is dependent on the aniso
of the surface tension; small amplitude fluctuations are c
vected away and disappear from the tip region.

Another situation of interest is that of a solid partic
nucleated in its undercooled melt. As the action of the s
face tension is directed to minimize the surface to volu
ratio, at first the shape selected is circular~in two dimen-
sions! or spherical~in three dimensions!. No steady solutions
can be found in these geometries, because the rate of gr
of the particle depends upon its radius, which is increas
with time. In both cases a linear stability analysis perform
within the quasistationary approximation shows that
germ becomes morphologically unstable when its radius
ceeds a critical valueR* , that is a decreasing function of th
undercoolingD: only at very low values ofD should the
symmetrical growth be practically observable.

However, the onset and the development of perturbati
551063-651X/97/55~3!/3087~5!/$10.00
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on the growing front in response to a finite noise has not
been investigated. In the present study this point will be
dressed both analytically, within the free-boundary pictu
and numerically, simulating the growth process with t
phase-field model@7,8#. To render tractable the numerica
approach, the analysis will be limited to the two dimension
~2D! case ~cylindrical or circular growth!, still retaining
some of the most interesting features of the full three dim
sional ~3D! problem.

The analysis of the governing equation will show that t
amplitude of the perturbing modes, in the early stage of
process, is drastically reduced whenD is increased, so that a
more stable growth should be associated to larger underc
ings.

We consider a pure substance, so that the diffus
field is given by the dimensionless temperatureu(x,t)
5c[T(x,t)2Tm]/L, while the driving force is the under
coolingD5c(Tm2T0)/L, whereTm andT0 represent the the
coexistence temperature of the two phases and the in
temperature of the melt, respectively;c andL are the specific
and latent heat per unit volume.

The phase-field approach removes the necessity of tr
ing the front position, that is found as a part of the numeri
solution, and incorporates in a natural fashion both surf
tension and surface kinetics effects. On the other hand,
classical free-boundary formulation of the problem is reco
ered asymptotically when the solid-liquid interface is suf
ciently sharp@9#.

The model gives a diffuse interface picture of the soli
fication process, and besides the capillary length introduc
new length scale, that is the interface thicknessd. Realistic
values of this parameter fall in the range of several atom
dimensions@10#. In 2D numerical simulations, the grid spa
ing must be selected in the order ofd while, to prevent finite
size effects, the dimensions of the computational dom
must be much larger than the thermal diffusion length. A
result, the cost of the solution increases asd24, and even
simple problems would result beyond the possibilities of
present day computing resources. In this study, followin
suggestion of Wheeler, Boettinger, and McFadden@11#, a
value is selected for the interface thickness that is small c
3087 © 1997 The American Physical Society
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3088 55CONTI, MARINOZZI, AND MARCONI
pared to the lowest geometric scale that characterizes
process, namely, the local radius of curvature of the p
turbed front, and, nevertheless, more than ten times gre
than realistic values.

The paper is organized as follows: in Sec. II a linear s
bility analysis of the free boundary equations will be co
ducted, to find the dependence of the critical radiusR* on
the undercoolingD; then the solution of the amplitude equ
tion for the perturbing modes will show that lower perturb
tions correspond to larger values ofD. In Sec. III the phase-
field model will be introduced, along with the metho
utilized to obtain the numerical solution. In Sec. IV the r
sults of the simulations will be presented, and Sec. V w
give some conclusions.

II. STABILITY OF THE CIRCULAR GROWTH:
AMPLITUDE OF THE PERTURBING MODES

The onset of instabilities in the growth of a solid cylind
into its undercooled melt is easily shown through a line
analysis of the free-boundary equations. For this purpose
system considered is a solid cylinder with radiusR sur-
rounded by undercooled liquid in a cylindrical container w
fixed temperatureu52D at the wall. The radius of the con
tainer isRc . The rate of growth is limited by the diffusion o
latent heat away from the interface; the dynamical field
then the local temperature, that obeys the diffusion equa

ut5¹2u. ~1!

Here, and in the following, the problem is treated in dime
sionless form, using some reference lengthj, and with time
scaled toj2/D. Neglecting the departure from thermod
namical equilibrium, the diffusion fieldu must fulfill the
interface condition

uint52d0K. ~2!

The capillary lengthd0 is defined asd05(cTm/L)(s/L),
wheres is the surface tension, andK is the local curvature
of the interface. The energy conservation at the interf
relates the temperature gradients on the liquid and solid s
of the front to its normal velocityvn

vn52@“ul2“us# int•n, ~3!

wheren is the normal versor to the interface. The proble
gives a simple solution in the quasistationary approximati
~instantaneous response of the thermal field to the ac
front configuration!. In this limit, valid for small undercool-
ings, Eq. ~1! reduces to the Laplace equation. Its circu
symmetric solution is

u~r !52d0K1
d0K2D

ln~Rc /R!
ln~r /R!, r.R ~4!

u~r !52d0K, r<R ~5!

and the interface velocity is

v52
d0K2D

ln~Rc /R!R
. ~6!
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The stability of the circular solution can be tested assumin
small perturbation on the interface, of the form

dR5eme
imf1vt ~7!

that involves variations of the temperature field

du~ l ,s!5um~ l ,s!e
imf1vt, ~8!

where the subscripts (l ,s) refer to the liquid and solid
phases, respectively;f is the angular coordinate, that ac
counts for the loss of circular symmetry of the interfac
Solving the Laplace equation for the perturbation gives,
first order,

um~s!52d0~m
221!emR

2~m12!rm, ~9!

um~ l !5Fvn2 d0~m
221!

R2 GemRmr2m ~10!

and the exponential growth rate is found as

vm5
vn
R

~m21!F12
2l0

2m~m11!

R2 G , ~11!

with l05Ad0l th; here l th is the thermal diffusion length
given by l th51/vn . Equation~11! states thatvm is an in-
creasing function of the front velocityvn , and becomes posi
tive asR increases beyondR*5l0A2m(m11); for m52
~the most unstable mode! R*52)l0. It is worth noting that
sincel0 decreases with an increasing front velocity~i.e., the
undercoolingD!, the unperturbed circular front could surviv
after the early stage of the growth only at very low values
D.

However, a different perspective is offered when the
fect of finite noise on the front stability is investigated. L
us assume that on the interface is a continuously acting n
of the form

hm~ t !5Q~ t !gme
imf, ~12!

where ^Q(t)Q(t8)&5d(t2t8), and ^Q(t)&50; gm is the
noise amplitude. The interface evolution of them mode is
described by

ėm5vmem1hm~ t !. ~13!

Integrating Eq.~13! gives, for the mode amplitude,

^uem~ t !2u&5^uem~0!2u&e2v̄t1
gm
2

2v̄
~e2v̄t21!, ~14!

wherev̄ is the time average ofvm .
The two terms on the right-hand side of Eq.~14! describe

two different processes: the evolution of an initially impos
perturbation, and the noise induced perturbation. Asv̄ is of
the order ofvn/R, it follows thatv̄t is of order one; then Eq
~14! suggests that the noise effect would decrease with
creasingv̄, i.e., the front velocity; ultimately increasing th
supercoolingD would result in a damping effect on the fron
instabilities. In the following sections this suggestion will b
confirmed by simulating numerically the growth proce
with the phase-field model.
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III. THE PHASE-FIELD MODEL: GOVERNING
EQUATIONS AND NUMERICAL TECHNIQUES

The model describes the solidification of a pure substa
in terms of two fields: the scalar phase fieldf(x,t) coupled
to the dimensionless temperature fieldu(x,t), The fieldf is
an order parameter and represents a solid forf50 and a
liquid for f51. Intermediate values correspond to the int
face between these two phases. The dynamical equat
derived along the lines suggested by Penrose and Fife@12#,
and then followed by Wanget al. @13#, are the following:

]u

]t
5¹2u2p8~f!

]f

]t
, ~15!

e2

m

]f

]t
5e2¹2f1f~12f!~f2 1

2 !1eap8~f!u1G~ t !.

~16!

FIG. 1. ~a! The solid seed att50.06.D50.6. ~b! The solid seed
at t50.2.D50.6.
e

-
ns,

The functionp~f!5f3~10215f16f2! enforces the condi-
tion that the kinetic equations have two fixed points atf50
and f51 for every value ofu. G(t) represents the nois
acting on the interface. The three dimensionless const
appearing in Eqs.~15! and ~16! were related by Wheeler
Murray, and Schaefer@14# to the material properties, namely
a5&jL2/(12csTm), m5msTm/(DL) ande5d/j, wherem
represents the kinetic undercooling coefficient. In the follo
ing numerical simulations we puta5200, m50.05, and
e50.01; fixing the length scale atj51.0531024 cm, these
values mimic, as close as possible, the thermophysical p
erties of nickel near its melting temperature@15#.

Equations~15! and ~16! have been solved on a two d
mensional square domain 0<x<l, 0<y<l; fixing l57.65
was sufficient to prevent finite size effects. Adiabatic con
tions were imposed on the domain’s boundaries. Initially,
the undercooled melt~u52D, f51! a solid seed~u50,

FIG. 2. ~a! The solid seed att50.03.D50.9. ~b! The solid seed
at t50.09.D50.9.
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3090 55CONTI, MARINOZZI, AND MARCONI
f50! is prepared at the center of the square. The size of
seed~333 grid points! is the minimum required to avoid
remelting and to ensure the successive growth. To discre
the equations, a uniform spatial grid is utilized, withDx5Dy
50.01; the Laplace operator is approximated through a
point formula and an explicit Euler integration scheme
employed to advance forward in time. A time ste
Dt50.231024 was required to ensure the stability of th
numerical scheme. The resolution of the grid was cho
following the suggestion of Wheeler, Murray, and Schae
@14#, to limit the truncation errors of the Laplace operato
the residual contribution of the numerical noise results i
superposition of circular modes acting on the interface,
has been utilized as the noise sourceG(t).

IV. NUMERICAL RESULTS

The initially square solid seed grows into the melt; t
action of the surface tension is directed as to minimize
surface to volume ratio, and very soon the interface beco
almost circular. Then, as the radius of the seed exceedsR*

FIG. 3. Distortion index of the circular front vs the avera
radius of the seed.D50.6.

FIG. 4. Spectral intensities of the modesm54 ~solid line! and
m58 ~dotted line!, vs the average radius of the seed.D50.6.
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the perturbations start to grow. A typical example of su
behavior is given in Figs. 1~a! and 1~b!, where the growing
solid is shown at two different times. Here the undercooli
is D50.6. Changing the undercooling has a strong effect
the deformation of the interface. Figures 2~a! and 2~b! show
the solid seed at two different times, withD50.9; it can be
observed that here the extent of the deformations is con
erably lower.

To describe the extent of the deformation a distortion
dex is defined as

I d5
1

R̄~f!
AR2~f!2R̄~f!2. ~17!

The functionR~f! is evaluated dividing the computationa
domain into 64 circular sectors of equal widthDf52p/64,
centered at the initial position of the seed. In each sector
front position is fixed through the relation

1
2R

2~f!Df5S~f!, ~18!

whereS~f! is the solid area in the sector considered.
The distortionI d is evaluated, during the evolution of th

process, at regular intervals of time; moreover, a Fou
analysis is performed with the same periodicity on the fu
tionR~f!, in order to identify the presence and the growth
the perturbing modes.

Figure 3 shows the distortionI d versusR̄ for D50.6. It
can be observed thatI d is high at the beginning of the pro
cess, due to the square shape of the initial nucleus. Then
initial distortion is rapidly reabsorbed, andI d reaches a mini-
mum atR̄50.18, where the distortion is less than 0.01; b
yond this value the onset of the perturbations is clearly r
ognizable. These results are complemented by Fig. 4, wh
the spectral intensities of the two circular harmonicsm54
andm58 are represented versusR̄. At first, asv4 becomes
positive, the modem54 greatly increases; successively t
modem58 enters the instability band and starts to grow. T
crossover of the two curves atR̄50.65 indicates that at a
later stage of the growth the propagation of the modem58 is

FIG. 5. Distortion index of the circular front vs the averag
radius of the seed.D50.9.
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55 3091DIFFUSION-CONTROLLED GROWTH OFA . . .
favored; however, this behavior cannot be amended t
straightforward analysis of Eq.~14!.

Figure 5 gives the same informations than Fig. 3, but n
D50.9. In this case too the initial distortion is substantia
reabsorbed whenR̄<0.1, but here the onset of the perturb
tions is retarded, andI d reaches its minimum atR̄50.35
where the distortion is less than 0.005; atR̄50.5 I d is still
below 0.01. Figure 6 shows that now the intensity of t
modem54 at the early stage is strongly damped, due to
low prefactor 1/v̄ in Eq. ~14!; beyondR̄50.3 the modem58
is prevailing.

The value ofR̄ where the minimum ofI d occurs, can be
regarded as an effective critical radiusR* 8 for the stability of
the circular growth; Fig. 7 shows thatR* 8 increases with
increasing the supercoolingD, indicating that the symmetry
of the circular front is more easily preserved at large val
of D.

V. CONCLUSIONS

The growth of a cylinder of solid into the undercoole
melt has been analyzed in two dimensions. The circular fr

FIG. 6. Spectral intensities of the modesm54 ~solid line! and
m58 ~dotted line!, vs the average radius of the seed.D50.9.
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becomes unstable beyond a critical size and is rapidly
stroyed. According to the stability analysis of the fre
boundary equations, the onset of the perturbations is
pected to occur at lower values of the cylinder radius as
undercoolingD increases; on the other side the amplitu
equation for the perturbing modes shows that the exten
the deformations in response to a finite noise should be
duced with increasingD. This suggestion is confirmed by
simulation of the process, conducted using the phase-fi
model. The numerical results show that at large values oD
the onset of the perturbations is retarded and the circ
symmetry of the growing front is effectively preserved
larger values of the cylinder radius.

Due to the limitation of computing resources it is n
possible, at present, to conduct the numerical simulation
three dimensions, to describe the onset and the developm
of perturbations in the growth of a spherical germ. Nevert
less, the 2D problem still retains some of the most interes
features that characterize the spherical growth, and the
sults we presented should provide a satisfactory insight e
of the three dimensional case.

FIG. 7. The effective critical radius of the circular front vs th
supercoolingD.
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